
//Assume that the AbbreviationsMap is a map with the name in lowercase as key and the xml tag as
value

generateXMLTag(name)
{
if the name contains dot characters, then remove the part of the name found after the first dot
character // this allows handling MessageDefinition name like
CorporateActionEventProcessingStatusAdvice.002V01
if the RepositoryConcept is a MessageDefinition, then remove the trailing version number (that is V01,
V02,...) // as per ISO 20022 part 4
if the AbbreviationsMap contains a key being the name in lowercase
 then
 return the value mapped by this key
 else
 camelCut the name into subparts // see description below
 for each of the subparts
 concatenate this subpart with the subsequent subparts of the name
 find the longuest of those concatenations where a match is found in the AbbreviationsMap
 // for example, for the name ‘ForeignExchangeTradeInstructionV01’
 // first remove the version ‘V01’
 // then for the first subpart 'Foreign'
 // first check if AbbreviationsMap contains en entry for 'ForeignExchangeTradeInstruction’; it does
not
 // then check if AbbreviationsMap contains en entry for 'ForeignExchangeTrade'; it does not
 // then check if AbbreviationsMap contains en entry for 'ForeignExchange'; it does and this maps
to ‘FX’
 if a match is found in the map // in the example we append ‘FX’
 then
 append the value mapped in the map
 and continue with the rest of the name
 // in our example, for the name ‘ForeignExchangeTradeInstructionV01’
 // the subpart 'ForeignExchange' was mapped to ‘FX’,
 // then continue with the rest of the name, that is ‘Trade’ and ’ Instruction’ (and the version
number was removed)
 // which eventually will map respectively to ‘Trad’ and ‘Instr’
 // And therefore, the initial name ‘ForeignExchangeTradeInstructionV01’ is finally mapped to
‘FXTradInstr’
 else
 report an error and stop generating the XML tag for this name
}

camelCut(name)
{
// separators are the uppercase characters, the digits, the dot, the underscore and the first character
of the name
// a sequence of separator characters can be a single character
iterate over the characters of the name
do a 'cut' if the character is the 1rst or the last character of a new sequence of separator characters
// For example
// CSDDeposit is cut as follows [CSD, Deposit]
// ForeignExchangeTradeInstruction is cut as follows [Foreign, Exchange, Trade, Instruction]
// AcknowledgedMessageReference is cut as follows [Acknowledged, Message, Reference]
// Quantity2Details is cut as follows [Quantity, 2, Details]
// HighestPriceValue12Months is cut as follows [Highest, Price, Value, 12, Months]
}

